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1. Introduction  
Protein structure determination has become an important area of research in molecular 

biology and structural genomics.  Understanding the tertiary structure of proteins can shed light 

on protein function and active sites, facilitating site-directed mutagenesis studies and drug design.  

However, experimental determination of protein structure through X-ray crystallography or 

NMR spectroscopy remains a difficult and costly process.1,2
  The development of computational 

methods for protein structure prediction from primary structure information has thus enabled this 

work to advance more quickly. 

 Two main approaches to computational structure determination exist: ab initio prediction 

and comparative modeling.  Ab initio or de novo prediction uses physical and chemical first 

principles to calculate the most favorable protein conformation.  Whereas this method is limited 

by computational power and accuracy, comparative modeling relies on information from 

previously solved 3D structures in the Brookhaven Protein Data Bank (PDB) and other databases.  

Also known as homology or template-based modeling, comparative modeling is based on the 

biological observation that proteins of similar amino acid sequences, usually evolutionarily 

related, fold into similar 3D structures.  Given a protein sequence, it should then be possible to 

find homologous sequences and, using the homologue structures as templates, predict the folding 

pattern of the protein in question. 

 Indeed, current homology modeling techniques have achieved structure predictions of 

such accuracy that they have been successfully used in drug design, virtual screening, and site-

directed mutagenesis applications.2  Depending on the degree of similarity between target and 

template sequences, predicted structures are generally within 3.5 Å, sometimes even 1 Å, of 

experimentally determined structures.2  Nonetheless, several limitations in the methodology 
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continue to hinder the acquisition of even more precise structure predictions, particularly for 

distantly related proteins, making homology modeling a challenging and rapidly evolving field. 

 The present review will examine the current methods and approaches utilized in 

comparative protein modeling.  An analysis of four representative modeling programs will serve 

to further demonstrate these methodologies and their performance as accurate structure 

predictors.  Finally, major challenges and obstacles currently facing template-based modeling 

will be discussed.    

 

2. The Comparative Modeling Procedure 
Generally speaking, given a protein sequence of interest, the comparative modeling 

procedure requires identification of homologous sequences with known structures, alignment of 

the query sequence to the selected template structure, 3D model construction, and refinement of 

the predicted model.  The actual modeling process is of course much more complex, and the 

methods employed by various prediction servers to identify suitable templates and structures 

may widely differ. 

 Because comparative modeling relies on the presumed similarity in 3D structure between 

proteins of similar sequences, accurate identification of homologous sequences is crucial to the 

generation of accurate structural models.  Most commonly, this process occurs through 

comparison of protein sequence profiles or Hidden Markov Models (HMMs).  Although simple 

BLAST searches for homologues by pairwise sequence alignment are also employed, the 

reliability of results in the “twilight zone” (less than 30% identity with query) begins to dwindle, 

limiting the usefulness of homologues identified by BLAST.  Profile methods, on the other hand, 

allow for identification of more distantly related proteins, broadening the range of proteins able 

to be modeled by homology methods.  Additionally, use of more advanced methods of sequence 

comparison, such as those comparing sequences to profiles (PSI-BLAST), profiles to profiles 

(FFAS), or HMMs to HMMs, contributes greatly to the accuracy of homologue identification.  In 

a benchmark study of the SCOP structure database, PSI-BLAST demonstrated twice the 

accuracy of BLAST, while FFAS improved upon PSI-BLAST by another 20%.  These increases 

in search specificity eventually translated to greater alignment of the model with the 

experimental structure, lowering Cα root mean square deviation (rmsd) from 7.8 Å to 4.4 Å.1 

 Once a set of homologues is selected for use as templates, alignment of the query 
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sequence to the template structures can proceed, often followed by modifications to optimize 

placement of insertions and deletions outside tight secondary structure elements.  Quite often, 

multiple structures are superposed according to the multiple sequence alignments of the target 

and template sequences, and the “average” template structure that results forms the basis of the 

query structure.  Whether the use of averaged multiple templates versus a single best template 

results in higher quality models has been a subject of debate.  If utilized properly, multi-template 

modeling may produce a structure incorporating the best features of each template; alternatively, 

an average model with intermediate quality will be generated.  Use of a single best template will 

avoid the latter possibility but present the dilemma of determining which single structure is in 

fact the “best.”  One study indicated that multi-template modeling tends to be superior to single-

template modeling, but the degree of improvement achieved through multiple templates appeared 

to be low, inconsistent, and difficult to predict.3  Depending on the modeling program, the 

manner in which template structures are used may vary widely.           

Finally, after alignment of the query sequence with the structural template, construction 

and refinement of the 3D model of the query protein can occur.  With the template structure 

providing the backbone for the model, model building programs must predict side-chain 

conformation from specific residue information and the structure of any regions, such as 

extended loops, that failed to align with the template.  While it is possible to model these features 

by searching structural libraries, loops longer than six or seven residues pose modeling 

challenges due to their greater range of possible conformations.4  Consequently, loop prediction 

algorithms must often employ ab initio methods to determine the most energetically favorable 

conformation.  Determination of side-chain packing by database search tends to be a more 

accurate process, especially if query and template backbone conformations are highly similar.  

While modeling side-chain conformation exactly is not entirely necessary for an accurate overall 

structure prediction, its reliability becomes critical if the models are to be used in ligand-binding 

or active site studies, and energy optimization algorithms may also be employed.1   

Numerous techniques for comparative model building have been developed, including 

rigid body assembly, segment matching, satisfaction of spatial restraints, and artificial 

evolution.5  Whereas rigid body assembly and segment matching rely more heavily on actual 

structural elements from the selected templates, the spatial restraints technique represents a more 

probabilistic approach to modeling.  Artificial evolution, the newest method, incorporates energy 
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minimization principles from ab initio prediction to gradually modify the template structure.  

When used optimally, no single method appears to outperform the others, though some are 

notably stronger at certain modeling tasks.6  To better illustrate these different homology 

modeling approaches, four of the most commonly used programs—SWISS-MODEL, SegMOD, 

MODELLER, and Nest—will be examined in the following section.  

 

3. Comparative Modeling Programs  
3.1  SWISS-MODEL 

 Developed by Peitsch et al. in 1993, SWISS-MODEL (http://swissmodel.expasy.org) is 

one of the most widely used web-based servers for automated structure prediction, having 

computed over 120,000 user requests in 2002.7  The SWISS-MODEL server is complemented by 

the SWISS-pdb-Viewer (DeepView), a graphical user interface for structure modeling, and the 

SWISS-MODEL Repository, a database of structures generated by the server and available for 

download.  In addition to a fully automated mode requiring minimum user input (ie. protein 

sequence only), SWISS-MODEL offers two more advanced user modes in which users can 

submit their own multiple sequence alignment or manually adjust the modeling parameters.7,8 

 To generate a 3D structure from a provided sequence, SWISS-MODEL utilizes rigid 

body assembly, the oldest homology modeling technique in which sections from aligned regions 

of the template are connected together by separately constructed non-conserved regions to form 

the model backbone.  Suitable template structures, those with similar sequences to the query, are 

first identified by a gapped BLAST search of the SWISS-MODEL template library ExPDB, a 

subset of PDB.  The selected templates are then superposed using an iterative least squares 

algorithm, the backbone atom positions averaged, and the query sequence fitted to the template 

to optimize placement of insertion and deletion regions.  Fragments that cannot be modeled by 

homology to the template are computed based on energy considerations or, if the region cannot 

be solved, searched against a library of loop structures to find an appropriate match.  Finally, 

side chain conformations and intermolecular interactions are adjusted to minimize 

conformational energy and correct any irregularities in overall 3D structure that resulted from the 

“cut-and-paste” assembly process.7-9  

 Assessments of the SWISS-MODEL prediction algorithm reveal variable accuracy 

dependent on the degree of query-template sequence similarity.  In a study of 1200 predicted 
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protein models, the majority of structures demonstrating greater than 40% sequence identity 

between query and template showed less than 3 Å rmsd from their experimental structures.10  

However, proteins in the “twilight zone” failed to exhibit such modeling accuracy, though this is 

true of several other prediction programs.  Assessment by the server evaluation project EVA-CM 

(EValuation of Automated protein structure prediction, Comparative Modeling division) showed 

that on average, SWISS-MODEL predictions demonstrated the lowest overall deviation (2 Å Cα 

rmsd) from experimental structures when compared to other servers’ models.  However, this 

apparently greater accuracy in modeling may be due to the relatively shorter regions that the 

program modeled in cases of low homology.9   

A more recent benchmark study by Wallner and Elofsson6 of several automated 

homology prediction servers, including Modeller, Nest, 3D-Jigsaw, and SegMOD/ENCAD, 

showed that SWISS-MODEL was relatively poor at producing reliable models.  Compared to a 

<1% failure rate in other programs, SWISS-MODEL was unable to generate predictions for 10% 

of the provided alignments due to difficulties in loop modeling that crashed the program.  

SWISS-MODEL also produced more models with poor stereochemistry for difficult query 

proteins and relatively higher numbers of 3D models that failed to converge (ie. >3 Å rmsd) with 

the backbone structure, reducing the fidelity of the final model to its original template. 

  

3.2  SegMOD 

 SegMOD, developed in 1992, is one of the first fully automated homology modeling 

programs to employ segment match modeling.11  It is routinely used in conjunction with the 

energy minimization program ENCAD to build highly accurate models from minimal input data.  

Unlike the web-based SWISS-MODEL, the SegMOD/ENCAD programs are not publicly 

available but can be requested for use from its developer Michael Levitt at Stanford University.6 

The modeling technique behind SegMOD was conceived years before its implementation 

in a fully automated structure prediction program.  Used initially for fitting structures to electron 

density maps, segment matching is based on the observation that the structure of most penta- or 

hexapeptide regions of a given protein can be found within other protein structures.  Given a vast 

library of solved structures, such as the PDB, it is possible to build a model of a novel protein, 

segment by segment, from template fragments presumably similar in conformation.  Segment fit 

is determined by matching inter-Cα distances between query and template, which are calculated 
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from Cα coordinates derived from highly resolved structures in the PDB.  The calculated root 

mean square deviations and van der Waals energy of the template segments are also measured, 

and out of several qualifying matches, one is selected for use in the model.  The process is 

repeated using segments chosen at random from the query protein until all residue positions have 

been solved.  Gaps in coordinate information can be solved if there is enough information from 

flanking regions to identify a plausible fragment from the database.11 

Two elements in particular appear to contribute to the accuracy and robustness of the 

segment matching method as executed by SegMOD: averaging of randomly selected segments 

and energy minimization of the final model.  Levitt argues that randomization avoids systematic 

errors that may accumulate from decisions lacking scientific rationale, such as where to begin 

modeling.11  But because SegMOD selects at random which segment to model and, to some 

extent, which template fragment to use, a number of plausible models are independently 

generated.  Rather than choosing one arbitrary “best” model, the mean coordinates of the 

structures are used, as in SWISS-MODEL.  This method proved to result in even lower root 

mean square deviations from the known structure.  Moreover, the final energy refinement step 

performed by ENCAD, a method adapted from ab initio modeling, corrects any suboptimal side-

chain conformations resulting from the piecewise assembly of the model, yielding structures 

with excellent stereochemistry.      

 Extensive testing of SegMOD confirms its ability to generate highly reliable and robust 

models.  The author’s own analysis of structure predictions for eight different proteins revealed 

an average overall backbone rmsd from the crystal structure of approximately 1.65 Å and a 

considerably low rmsd of 0.97 Å for side-chain torsion angles.  In comparison, the overall rmsd 

for the mean models of each protein, the result of averaging ten structures together, was only 

1.19 Å, illustrating the significant contribution of the coordinate averaging step to improving 

model quality.  It was also found that the accuracy of the final model was not highly dependent 

on the accuracy of the coordinates of the input models, also likely a consequence of the 

averaging step.11  The Wallner and Elofsson benchmark study concluded that SegMOD was 

among the more highly performing predictors because of its speed, accurate stereochemistry, and 

ability to generate the most “acceptable” structures (<10% bad residues).  The program’s primary 

criticism in this study was faulty backbone conformation, though its shortcomings in this area 

were still less than those of other programs.6 
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3.3  MODELLER 

Perhaps the most widely implemented structure prediction program is MODELLER.12  

Though not a web-based homology modeling server, the MODELLER software package is 

available for download from the developers’ website (http://salilab.org/modeller), enabling its 

use with other structure prediction servers.  Indeed, MODELLER has become the model-

building program of choice for several homology modeling servers because of its relative speed 

and reliability.  Several of the strongest performing prediction servers in the CASP8 experiment, 

such as HHpred, incorporate MODELLER in their methodology.13,14     

Whereas SWISS-MODEL employs rigid body assembly in its construction of the protein 

backbone, MODELLER builds 3D structures that must satisfy certain spatial restraints, including 

Cα-Cα bond length, main-chain and side-chain dihedral angles, and van der Waals interactions.  

These restraints are expressed as probability density functions representing the probability of 

occurrence of a certain conformation and are calculated from the structures of homologous 

template sequences.  Compilation of the probability density functions from individual template 

structures into a single representative probability density function, followed by optimization of 

this function, then describes the overall spatial restraints for the query protein.  As a result, the 

predicted model represents the most probable structure of the protein in question, based on 

structural information derived from known homologues.12          

 Like SWISS-MODEL and SegMOD, MODELLER is fully automated and can generate a 

3D model starting from a user-provided protein sequence.  The sequence is converted into a 

profile, which is searched against a MODELLER-specific database of nonredundant PDB 

sequences, each of which is representative of a closely related (>95% identity) set of PDB 

sequences.  Homologous sequences returned by the profile search are submitted to a multiple 

sequence alignment, which in turn is used to construct a multiple structure alignment to identify 

the optimal template structures.  These template structures are finally used to calculate the spatial 

restraints from which the predicted model is constructed.12,15,16  

When compared against other homology modeling programs in the Wallner and Elofsson 

study, MODELLER was considered one of the better performing structure predictors.  

MODELLER was highly successful in generating reliable structures with accurate backbone 

dihedral angles and produced a relatively constant proportion of residues with poor 

stereochemistry across all levels of sequence identity.  The greatest shortcoming of the program 
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lay in its ability to accurately model side-chain torsion angles, producing only 30% correct 

rotamers in sequences demonstrating <50% identity.  Like SWISS-MODEL, MODELLER also 

failed to generate convergent models for a much higher proportion of the tested sequences than 

other programs.  However, it was found that simply rerunning MODELLER with different 

parameters could overcome the convergence problem.6   

 

3.4  NEST 

  Implementation of yet another homology modeling technique, artificial evolution, was 

accomplished in 2001 at Columbia University with the program NEST.17  Now a part of the 

JACKAL software package, NEST combines template-based methods with ab initio-like energy 

minimization principles to generate highly accurate 3D models.  The loop and side-chain 

modeling programs LOOPY and SCAP have been integrated into NEST, enabling NEST to fully 

generate and refine structural predictions starting with user-provided sequence alignments.  Like 

MODELLER, the JACKAL package, which includes the core program NEST, a graphical 

environment, and several supporting prediction tools, is available for free download from the 

developer’s website.18  

 The goal of the NEST algorithm is to model the gradual process of molecular evolution 

from a homologous “ancestral” protein to the current protein of interest.  Whereas SWISS-

MODEL and SegMOD consider the template and query proteins in terms of regional similarity, 

and MODELLER considers the proteins more in their entirety, NEST considers each difference 

from the template sequence to be an independent evolutionary event—either a point mutation, an 

insertion, or a deletion.  Assuming the template structure to be the ancestral state, a single change 

in alignment is introduced and the structure recalculated using energy minimization and 

molecular dynamics principles.  This process is repeated until all differences between query and 

template have been accounted for.  Since the actual order of these evolutionary events cannot be 

determined, NEST begins with the least energetically costly changes, usually point mutations on 

the protein surface, to facilitate the stepwise optimization process.  Once all necessary 

“mutations” have been made, the program proceeds with model refinement.17 

 In addition to this new approach to homology modeling, the NEST method introduces the 

idea of colony energy in exploring the conformational space of residue side-chains and loops.  

Colony energy takes into account the force field energy, such as local van der Waals interactions, 
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as well as the entropic favorability or likelihood of a given conformation,19 and its use in 

determining loop and side-chain structure represents a departure from the loop library search 

used in SWISS-MODEL.  Although the loop modeling program employed by NEST is 

considered an ab initio method, NEST itself still relies on template sequences—either a single 

one, multiple ones, or a composite18—to begin the model building process.   

 Assessment of NEST-generated structures by Wallner and Elofsson6 demonstrated that 

NEST performed equally well as Modeller and SegMOD and better than the other tested 

methods.  Faster than Modeller, NEST did not crash or encounter convergence problems as 

frequently and also generated the most models with a near-optimal score based on MaxSub 

assessment criteria.  Notably, NEST was unlikely to deteriorate the model compared to the 

template, doing so in only 5% of cases, half as often as Modeller.  The main flaw identified in 

the study was poor model stereochemistry, though the fraction of bad residues was constant 

across all levels of sequence identity and was comparable to that observed in other homology 

modeling programs.        

 

4. Current Challenges and Limitations 
 Major strides have been made in the homology modeling field over the past two decades.  

From CASP1 in 1994 to the most recent CASP8, it is clear that template-based methods of 

structure prediction have gained popularity over ab initio modeling because of their greater 

success in achieving models that approach the quality of high-resolution crystal structures.20  

However, despite this progress, researchers continue to confront several challenges and 

shortcomings in the comparative modeling methodology that limit their ability to further increase 

model quality at all levels of homology. 

 The first of such challenges lies in accurate sequence-structure alignment and optimal 

template selection, especially in distant evolutionary cases.  It is generally agreed that in the 

“twilight zone” of sequence identity, the inability of current methods to identify proper 

homologues and align relatively dissimilar sequences leads to highly unreliable structures.  

While improvements in alignment programs like PSI-BLAST have led to a gradual improvement 

in remote homology modeling over the lifetime of CASP, there are still intrinsic limitations in 

gleaning structural information from the relationship between distant homologues.  Though 

evolutionarily related structures may share similar features and equivalent regions, a decreasing 
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degree of close identity will introduce more differences in structure and increase the likelihood 

that a large proportion of target residues, up to 50% for the most distant homologues, cannot be 

mapped to the template.20  These difficult cases are not impossible to model well, especially if 

human intervention is used,21 but developing automated methods for remote homology modeling 

will certainly be an important area of future focus. 

 The next major obstacle lies in the refinement or “defrosting” of predicted models, 

considered the bottleneck step in comparative modeling.20  This is particularly true for proteins at 

the medium and high identity levels, for which template identification and sequence-structure 

alignment are not nearly as problematic.  Oftentimes, refinement attempts lead to deterioration in 

model quality compared to the original template, but adjustments to backbone conformation and 

side-chain stereochemistry are essential to generating near-native models.  Like SegMOD and 

NEST have shown, energy minimization and molecular dynamics techniques present the most 

promise in this area.  Nonetheless, utilization of these energy-based methods requires 

surmounting of the computational obstacles faced by de novo modelers, such as the size of the 

conformational sampling space and insufficient information about interatomic forces.20,22 

 Another factor suggested to contribute to suboptimal modeling of high-identity sequences 

is the amount of structural information available.  Even when template selection and alignment 

were optimized, one study found that most of the CASP5 targets failed to achieve CASP 

assessment scores above 70%.23  The authors attributed this shortcoming to the lack of 

information necessary to build a reliable model, which is certainly the case for remote homology 

modeling.  Current estimates place the number of protein sequences in databases at two orders of 

magnitude greater than the number of distinct protein structures in the PDB.2  Expansion of the 

structure database to include more diverse templates that may be closely related to the query 

protein would help to remedy this information shortage, although one assessment of CASP6 

results revealed that this was not the case.24   

A different perspective is that the ability to recognize distinct tertiary structures from 

available information, rather than the ability to acquire suitable templates from a more 

comprehensive pool, is in need of greater attention.  In contrast to the remote homology 

modeling situation, where the challenge is determining which sequences are most related, certain 

related proteins may exhibit similar sequences but have divergent structures, a setback 

encountered in CASP6.  Changes such as β-strand inversions and hairpin flips, circular 



 11 

permutations, and fusion of duplicated domains may go undetected by current modeling 

methodology, which rely primarily on sequence alignment to infer structure.22  Though there 

may not be a straightforward solution to this problem, ongoing research in the fold recognition 

community may point to more sensitive methods of obtaining subtle structural information from 

sequences. 

 

5. Future Directions 
 Although comparative modeling has been highly successful in advancing protein 

structure analysis in silico, it is clear that there is still much work to be done before the goal of 

experimental-quality structure predictions can be realized.  Given the limitations of template-

based modeling, combining traditional homology modeling techniques with other computational 

methods for protein structure determination will most enable the field to progress. 

 Indeed, the power of new, more integrative approaches is apparent in the top performers 

of the CASP8 experiment.  While many of the best prediction servers continue to use basic 

techniques employed by homology modeling, including profile-profile searches and the 

MODELLER program, they often rely heavily on protein threading, fold recognition, fragment 

assembly, and other novel techniques to achieve high-quality results.  Most notable is the recent 

emergence of meta-servers such as 3D-Jury and Pcons, which compile the results of other 

homology prediction servers to generate their own structure predictions.  The ability of meta-

servers to outperform individual autonomous servers in recent trials13,25 is indicative of their 

success and future potential, though it has been argued that their use has not contributed 

significantly to our understanding of protein structure and prediction but rather represents a more 

practical means of achieving a desired end.5   

With the next installment of CASP quickly approaching in 2010, it remains to be seen 

how far template-based modeling has progressed since CASP8.  The insights to be gained from 

CASP9 and other future community-wide assessments will be important indicators of how much 

further we must go to see computationally determined protein structures one day rivaling their 

experimentally determined counterparts.         
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